111 research outputs found

    Novel canine high-quality metagenome-assembled genomes, prophages and host-associated plasmids provided by long-read metagenomics together with Hi-C proximity ligation

    Get PDF
    The human gut microbiome has been extensively studied, yet the canine gut microbiome is still largely unknown. The availability of high-quality genomes is essential in the fields of veterinary medicine and nutrition to unravel the biological role of key microbial members in the canine gut environment. Our aim was to evaluate nanopore long-read metagenomics and Hi-C (high-throughput chromosome conformation capture) proximity ligation to provide high-quality metagenome-assembled genomes (HQ MAGs) of the canine gut environment. By combining nanopore long-read metagenomics and Hi-C proximity ligation, we retrieved 27 HQ MAGs and 7 medium-quality MAGs of a faecal sample of a healthy dog. Canine MAGs (CanMAGs) improved genome contiguity of representatives from the animal and human MAG catalogues - short-read MAGs from public datasets - for the species they represented: they were more contiguous with complete ribosomal operons and at least 18 canonical tRNAs. Both canine-specific bacterial species and gut generalists inhabit the dog's gastrointestinal environment. Most of them belonged to , followed by and . We also assembled one and one MAG. CanMAGs harboured antimicrobial-resistance genes (ARGs) and prophages and were linked to plasmids. ARGs conferring resistance to tetracycline were most predominant within CanMAGs, followed by lincosamide and macrolide ones. At the functional level, carbohydrate transport and metabolism was the most variable within the CanMAGs, and mobilome function was abundant in some MAGs. Specifically, we assigned the mobilome functions and the associated mobile genetic elements to the bacterial host. The CanMAGs harboured 50 bacteriophages, providing novel bacterial-host information for eight viral clusters, and Hi-C proximity ligation data linked the six potential plasmids to their bacterial host. Long-read metagenomics and Hi-C proximity ligation are likely to become a comprehensive approach to HQ MAG discovery and assignment of extra-chromosomal elements to their bacterial host. This will provide essential information for studying the canine gut microbiome in veterinary medicine and animal nutrition

    Microbiota profiling with long amplicons using Nanopore sequencing : full-length 16S rRNA gene and the 16S-ITS-23S of the rrn operon

    Get PDF
    Background: Profiling the microbiome of low-biomass samples is challenging for metagenomics since these samples are prone to contain DNA from other sources (e.g. host or environment). The usual approach is sequencing short regions of the 16S rRNA gene, which fails to assign taxonomy to genus and species level. To achieve an increased taxonomic resolution, we aim to develop long-amplicon PCR-based approaches using Nanopore sequencing. We assessed two different genetic markers: the full-length 16S rRNA (~1,500 bp) and the 16S-ITS-23S region from the rrn operon (4,300 bp). Methods: We sequenced a clinical isolate of Staphylococcus pseudintermedius, two mock communities and two pools of low-biomass samples (dog skin). Nanopore sequencing was performed on MinION™ using the 1D PCR barcoding kit. Sequences were pre-processed, and data were analyzed using EPI2ME or Minimap2 with rrn database. Consensus sequences of the 16S-ITS-23S genetic marker were obtained using canu. Results: The full-length 16S rRNA and the 16S-ITS-23S region of the rrn operon were used to retrieve the microbiota composition of the samples at the genus and species level. For the Staphylococcus pseudintermedius isolate, the amplicons were assigned to the correct bacterial species in ~98% of the cases with the16S-ITS-23S genetic marker, and in ~68%, with the 16S rRNA gene when using EPI2ME. Using mock communities, we found that the full-length 16S rRNA gene represented better the abundances of a microbial community; whereas, 16S-ITS-23S obtained better resolution at the species level. Finally, we characterized low-biomass skin microbiota samples and detected species with an environmental origin. Conclusions: Both full-length 16S rRNA and the 16S-ITS-23S of the rrn operon retrieved the microbiota composition of simple and complex microbial communities, even from the low-biomass samples such as dog skin. For an increased resolution at the species level, targeting the 16S-ITS-23S of the rrn operon would be the best choice

    Diverse Populations of Staphylococcus pseudintermedius Colonize the Skin of Healthy Dogs

    Get PDF
    Staphylococcus pseudintermedius is a commensal bacterium of the canine skin but is also a key opportunistic pathogen that is responsible for most cases of pyoderma in dogs. The current paradigm indicates that infection arises when predisposing factors alter the healthy skin barrier. Despite their importance, the characteristics of the S. pseudintermedius populations colonizing the skin of healthy dogs are yet largely unknown. Here, we retrieved 67 complete circular genomes and 19 associated plasmids from S. pseudintermedius isolated from the skin of 9 healthy dogs via long-reads Nanopore sequencing. Within the S. pseudintermedius populations isolated from healthy skin, multilocus sequence typing (MLST) detected 10 different STs, distributed mainly by the host. 39% of the 18 representative genomes isolated herein were methicillin-resistant S. pseudintermedius (MRSP), and they showed, on average, a higher number of antibiotic resistance genes and prophages than did the methicillin-sensitive (MSSP). In summary, our results revealed that the S. pseudintermedius populations inhabiting the skin of healthy dogs are relatively diverse and heterogeneous in terms of MLST and methicillin resistance. In this study, all of the 67 commensal S. pseudintermedius populations that were isolated from healthy dogs contained antibiotic resistance genes, indicating the extent and severity of the problem of antimicrobial resistance in staphylococci with zoonotic potential.info:eu-repo/semantics/publishedVersio

    Concordance between Antimicrobial Resistance Phenotype and Genotype of Staphylococcus pseudintermedius from Healthy Dogs

    Get PDF
    Staphylococcus pseudintermedius, a common commensal canine bacterium, is the main cause of skin infections in dogs and is a potential zoonotic pathogen. The emergence of methicillin-resistant S. pseudintermedius (MRSP) has compromised the treatment of infections caused by these bacteria. In this study, we compared the phenotypic results obtained by minimum inhibitory concentration (MICs) for 67 S. pseudintermedius isolates from the skin of nine healthy dogs versus the genotypic data obtained with Nanopore sequencing. A total of 17 antibiotic resistance genes (ARGs) were detected among the isolates. A good correlation between phenotype and genotype was observed for some antimicrobial classes, such as ciprofloxacin (fluoroquinolone), macrolides, or tetracycline. However, for oxacillin (beta-lactam) or aminoglycosides the correlation was low. Two antibiotic resistance genes were located on plasmids integrated in the chromosome, and a third one was in a circular plasmid. To our knowledge, this is the first study assessing the correlation between phenotype and genotype regarding antimicrobial resistance of S. pseudintermedius from healthy dogs using Nanopore sequencing technology.info:eu-repo/semantics/publishedVersio

    Prevalence and co-infection of haemotropic mycoplasmas in Portuguese cats by real-time polymerase chain reaction

    Get PDF
    The diagnosis of feline haemoplasmosis has improved over the years, with several techniques enabling a clear and specific diagnosis, and where polymerase chain reaction (PCR) is considered as the 'gold standard'. The aim of this study was to survey the prevalence of feline haemoplasmas in 320 cats from the north-central region of Portugal by the use of real-time PCR, as well as to evaluate any associations between infection, clinical presentation and risk factors. The overall prevalence of infection by feline haemoplasmas was 43.43% (139/320), where 41.56% (133/320) corresponded to Candidatus Mycoplasma haemominutum (CMhm), 12.81% (41/320) to Mycoplasma haemofelis (Mhf), 4.38% (14/320) to Candidatus Mycoplasma haematoparvum and 1.25% (4/320) to Candidatus Mycoplasma turicensis. Almost 13% (47/320) of the samples were co-infected, with the most common co-infection being CMhm and Mhf (23.74%). Infection was found statistically significant with feline immunodeficiency/feline leukaemia virus status (P = 0.034), but no significant association was found for breed, sex, fertility status (neutered/spayed/entire), age, clinical status, living conditions (in/outdoor), anaemia status, or the presence/absence of ticks or fleas. Cats from north-central Portugal are infected with all the known feline haemoplasma species, with CMhm being the most common one. Prevalence of all feline haemoplasmas was higher than that reported previously in cats from other European countries, but similar to that described in Portugal for dogs. These data provide a better perspective regarding Mycoplasma species infection in Europe, and new information that helps us better understand feline haemoplasmosis

    Short communication:Intra- and inter-individual milk microbiota variability in healthy and infected water buffalo udder quarters

    Get PDF
    The concept that ruminant mammary gland quarters are anatomically and physiologically unrelated has been recently challenged by immunological evidence. How this interdependence reflects on individual quarter milk microbiota is unknown. The aim of the present study was to cover this gap by investigating the interdependence of quarters among the same mammary gland at the milk microbiota level using next-generation sequencing of the V4\u201316S rRNA gene. A total of 52 samples were included in this study and classified as healthy or affected by subclinical mastitis. Extraction of DNA, amplification of the V4\u201316S rRNA gene, and sequencing using Ion Torrent Personal Genome Machine (Thermo Fisher Scientific, Waltham, MA) were carried out. We found that the intra-individual variability was lower than the inter-individual one. The present findings further support at milk microbiota level the hypothesis of the interdependence of quarters, as previously demonstrated following immunological studies, suggesting that individual factors (e.g., immunity, genetics) may have a role in modulating milk microbiota

    Concordance between Antimicrobial Resistance Phenotype and Genotype of Staphylococcus pseudintermedius from Healthy Dogs

    Get PDF
    Staphylococcus pseudintermedius, a common commensal canine bacterium, is the main cause of skin infections in dogs and is a potential zoonotic pathogen. The emergence of methicillin-resistant S. pseudintermedius (MRSP) has compromised the treatment of infections caused by these bacteria. In this study, we compared the phenotypic results obtained by minimum inhibitory concentration (MICs) for 67 S. pseudintermedius isolates from the skin of nine healthy dogs versus the genotypic data obtained with Nanopore sequencing. A total of 17 antibiotic resistance genes (ARGs) were detected among the isolates. A good correlation between phenotype and genotype was observed for some antimicrobial classes, such as ciprofloxacin (fluoroquinolone), macrolides, or tetracycline. However, for oxacillin (beta-lactam) or aminoglycosides the correlation was low. Two antibiotic resistance genes were located on plasmids integrated in the chromosome, and a third one was in a circular plasmid. To our knowledge, this is the first study assessing the correlation between phenotype and genotype regarding antimicrobial resistance of S. pseudintermedius from healthy dogs using Nanopore sequencing technology

    Individual Signatures Define Canine Skin Microbiota Composition and Variability

    Get PDF
    Dogs present almost all their skin sites covered by hair, but canine skin disorders are more common in certain skin sites and breeds. The goal of our study is to characterize the composition and variability of the skin microbiota in healthy dogs and to evaluate the effect of the breed, the skin site, and the individual. We have analyzed eight skin sites of nine healthy dogs from three different breeds by massive sequencing of 16S rRNA gene V1-V2 hypervariable regions. The main phyla inhabiting the skin microbiota in healthy dogs are Proteobacteria, Firmicutes, Fusobacteria, Actinobacteria, and Bacteroidetes. Our results suggest that skin microbiota composition pattern is individual specific, with some dogs presenting an even representation of the main phyla and other dogs with only a major phylum. The individual is the main force driving skin microbiota composition and diversity rather than the skin site or the breed. The individual is explaining 45% of the distances among samples, whereas skin site explains 19% and breed 9%. Moreover, analysis of similarities suggests a strong dissimilarity among individuals (R = 0.79, P = 0.001) that is mainly explained by low-abundant species in each dog. Skin site also plays a role: inner pinna presents the highest diversity value, whereas perianal region presents the lowest one and the most differentiated microbiota composition

    Transmission of Similar Mcr-1 Carrying Plasmids among Different Escherichia coli Lineages Isolated from Livestock and the Farmer

    Get PDF
    Colistin use has mostly been stopped in human medicine, due to its toxicity. However, nowadays, it still is used as a last-resort antibiotic to treat hospital infections caused by multi-drug resistant Enterobacteriaceae. On the contrary, colistin has been used in veterinary medicine until recently. In this study, 210 fecal samples from pigs (n = 57), calves (n = 152), and the farmer (n = 1) were collected from a farm where E. coli harboring mcr-1-mcr-3 was previously detected. Samples were plated, and mcr-genes presence was confirmed by multiplex-PCR. Hybrid sequencing which determined the presence and location of mcr-1, other antibiotic resistance genes, and virulence factors. Eighteen colistin resistant isolates (13 from calves, four from pigs, and one from the farmer) contained mcr-1 associated with plasmids (IncX4, IncI2, and IncHI2), except for two that yielded mcr-1 in the chromosome. Similar plasmids were distributed in different E. coli lineages. Transmission of mcr-1 to the farmer most likely occurred by horizontal gene transfer from E. coli of calf origin, since plasmids were highly similar (99% coverage, 99.97% identity). Moreover, 33 virulence factors, including stx2 for Shiga toxin E. coli (STEC) were detected, highlighting the role of livestock as a reservoir of pathotypes with zoonotic potential.info:eu-repo/semantics/publishedVersio

    Transmission of Similar Mcr-1 Carrying Plasmids among Different Escherichia coli Lineages Isolated from Livestock and the Farmer

    Get PDF
    Colistin use has mostly been stopped in human medicine, due to its toxicity. However, nowadays, it still is used as a last-resort antibiotic to treat hospital infections caused by multi-drug resistant Enterobacteriaceae. On the contrary, colistin has been used in veterinary medicine until recently. In this study, 210 fecal samples from pigs (n = 57), calves (n = 152), and the farmer (n = 1) were collected from a farm where E. coli harboring mcr-1-mcr-3 was previously detected. Samples were plated, and mcr-genes presence was confirmed by multiplex-PCR. Hybrid sequencing which determined the presence and location of mcr-1, other antibiotic resistance genes, and virulence factors. Eighteen colistin resistant isolates (13 from calves, four from pigs, and one from the farmer) contained mcr-1 associated with plasmids (IncX4, IncI2, and IncHI2), except for two that yielded mcr-1 in the chromosome. Similar plasmids were distributed in different E. coli lineages. Transmission of mcr-1 to the farmer most likely occurred by horizontal gene transfer from E. coli of calf origin, since plasmids were highly similar (99% coverage, 99.97% identity). Moreover, 33 virulence factors, including stx2 for Shiga toxin E. coli (STEC) were detected, highlighting the role of livestock as a reservoir of pathotypes with zoonotic potential
    corecore